LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS
 THIRD SEMESTER - NOVEMBER 2009

ST 3814 - STATISTICAL COMPUTING - II

Date \& Time: 10/11/2009 / 9:00-12:00
Dept. No.
Max. : 100 Marks

Answer ALL the Questions.

1. a). Let $\left\{\mathrm{X}_{\mathrm{n}}, \mathrm{n}=0,1,2,3,4, \ldots ..\right\}$ be a Markov chain with state space $\{0,1,2\}$ and one step matrix of transition probabilities

$$
\mathrm{P}=\left[\begin{array}{ccc}
0.5 & 0.3 & 0.2 \\
0.3 & 0.2 & 0.5 \\
0.2 & 0.5 & 0.3
\end{array}\right]
$$

Find (i) $\mathrm{P}^{2} \quad$ (ii) $\operatorname{Lim}_{\mathrm{n} \rightarrow \infty} \mathrm{P}^{\mathrm{n}} \quad$ (iii) $\mathrm{P}\left[\mathrm{X}_{2}=0\right]$
given X_{0} takes the values $0,1,2$ with probabilities $0.3,0.4,0.3$ respectively. ($\mathbf{1 2}$ marks) (b). For a Markov chain with one step matrix of transition probabilities as

$$
P=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{2}{3} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\frac{3}{4} & \frac{1}{4} & 0 & 0
\end{array}\right]
$$

and with state space $\{0,1,2,3\}$,clearly mention the states as transient, recurrent, positive recurrent or null recurrent.
(22 marks)

> (OR)
(c). An infinite Markov chain on the set of non-negative integers has the transition function as follows:

$$
\mathrm{p}_{\mathrm{k} 0}=\frac{K+1}{K+2} \quad \text { and } \quad \mathrm{p}_{\mathrm{k}, \mathrm{k}+1}=\frac{1}{K+2}
$$

i) Find whether the chain is positive recurrent, null recurrent or transient.
ii) Find the stationary distribution, in case it exists.
(20 marks)
(d). In a genetical experiment, the following frequencies were observed:

AB	Ab	aB	ab
140	22	28	10

If theory predicts the probabilities to be $\frac{2+\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}$, obtain the maximum likelihood estimate of θ and test the goodness of fit.
(14 marks)
2. (a). To study the effects of a drug on a particular disease 12 patients were selected in a clinical trials. The measurements on 3 variables are given below (in micrograms).

Sl.no	X_{1}	X_{2}	X_{3}
1	1.40	0.50	0.71
2	1.18	0.39	0.69
3	1.23	0.44	0.70
4	1.19	0.37	0.72
5	1.38	0.42	0.71
6	1.17	0.45	0.70
7	1.31	0.41	0.70
8	1.30	0.47	0.67
9	1.22	0.29	0.68
10	1.00	0.30	0.70
12	1.12	0.27	0.72
1.09	0.35	0.73	

(i) Estimate μ, Σ and the correlation matrix.
(ii) Estimate the parameters for the conditional distribution of X_{3} given $X_{1}=1.5$, $\mathrm{X}_{2}=0.6$ using S .
(iii) Find whether the variable X_{1} is marginally normal.
(iv) Which of the sample correlations are significant?
$(8+10+10+5)$

(OR)

(b). The tail length in millimeters for 15 male and female hook-billed kites are given below:

(i) Test whether $\Sigma_{1}=\Sigma_{2}$.
(ii) Using Behrens-Fisher method test whether the mean vectors are equal.
3. (a) The following sampling design is adopted to select a sample from a population with six units:

$$
\mathrm{P}(s)= \begin{cases}0.2, & \text { for } s=\{1,3,6\},\{2,4,5\} \\ 0.3, & \text { for } s=\{1,2,5\},\{3,5,6\}\end{cases}
$$

Find all the first and second order inclusion probabilities. Also, verify the result
$\mathrm{E}[\mathrm{n}(s)]=\sum_{i=1}^{N} \pi_{i}$
(b) The following information are available from a pilot survey using a stratified random sample:

Stratum Size $\left(\mathbf{N}_{\mathbf{h}}\right)$	Sample Size $\left(\mathbf{n}_{\mathbf{h}}\right)$	Sample std. Devn. $\left(s_{h}^{2}\right)$	Cost per Unit $\left(\mathbf{C}_{\mathbf{h}}\right)$
200	10	2.5	12
300	5	1.2	16
500	8	1.5	20
400	10	2.0	15
600	17	2.4	14

Find the optimum sample sizes to be drawn from each stratum for a full-fledged survey if the total sample size has to be 200 .
(c) In a survey of 100 commercial buildings in a town, it is found that 21 have not installed proper water-harvesting structures. The total number of commercial buildings in the town is known to be 1500. Compute a 99% confidence interval for the proportion of buildings without water-harvesting structures in the town.
(d) A pilot survey of 20 households in a locality gave the following information on the number of family members (x) and the number of mobile phones used (y) in each family:

\boldsymbol{x}	3	4	4	2	6	5	3	4	2	5	4	6	3	4	4	5	2	3	4	4
\boldsymbol{y}	1	3	2	2	3	3	2	2	2	2	3	4	1	2	1	4	1	1	3	4

The number of households in the locality is known to be 700 and the number of people living in the locality is 2800 . Based on the pilot survey results, would you recommend usage of 'Ratio estimate' in preference to the usual estimate $\mathrm{N} \bar{y}$, to estimate the total number of mobile phones in the locality? Support your answer with proper theoretical justification.
(23 marks)

